segunda-feira, 18 de abril de 2011

Celulas-tronco



Células-troncos são células mestras que têm a capacidade de se transformar em outros tipos de células, incluindo as do cérebro, coração, ossos, músculos e pele.
Células Tronco
O que são células-tronco embrionárias?
Células-tronco embrionárias são aquelas encontradas em embriões. Essas células têm a capacidade de se transformar em praticamente qualquer célula do corpo. São chamadas pluripotentes. É essa capacidade que permite que um embrião se transforme em um corpo totalmente formado. Cerca de cinco dias após a fertilização, o embrião humano se torna um blastocisto-uma esfera com aproximadamente 100 células. As encontradas em sua camada externa vão formar a placenta e outros órgãos necessários ao desenvolvimento fetal do útero. Já as existentes em seu interior formam quase todos os tecidos do corpo. Estas são as células-tronco de embriões usadas nas pesquisas.

O que são células-tronco adultas?
Esse nome é um erro, porque são encontradas em tecidos maduros, no corpo de crianças e adultos. As células-tronco de adultos são mais especializadas que as embrionárias e dão origem a tipos específicos de células. São chamadas multipotentes. Algumas pesquisas sugerem que as células-tronco adultas podem se transformar em tipos muito mais variados de células do que se supunha anteriormente.

sábado, 2 de abril de 2011

Célula Procarionte


Procariontesprocariotas ou procariotos (grego transliteradopro, anterior, antes, primeiro, primitivo - karyon, noz ou amêndoa - núcleo = Nucleo Primitivo) são organismos unicelulares que não apresentam seu material genético delimitado por uma membrana. Estes seres não possuem nenhum tipo de compartimentalização interna por membranas, estando ausentes várias outras organelas, como as mitocôndrias, o Complexo de Golgi e o fuso mitótico.
Esta definição engloba todos os organismos dos domínios Bacteria e Archaea. Tais células possuem diversas outras diferenças se compararmos com as células eucarióticas. Elas não possuem a maior parte das organelas (o ribossomo é presente), seuDNA é cíclico, a fluidez de suas membranas são apenas controladas por fosfolipídios (e não por fosfolipídios e esteróis como em células eucarióticas), não se juntam formando organismos pluricelulares, já que não tem a capacidade de formar tecidos, etc.
Este nome tem origem grega onde karyon, significa noz ou núcleo, combinado com o prefixo pro-, que significa anteriorCélulascom um núcleo são chamadas eucariontes, onde o prefixo eu- significa bom ou verdadeiro. Em algumas células procariontes observadas ao microscópio eletrônico foram observados vestígios nucleares pouco visíveis.


   


Além do núcleo, os procariontes também não possuem outras organelas celulares (comomitocôndrios ou cloroplastos) e o seu citoplasma não é dividido em compartimentos, ao contrário do que acontece nos eucariontes. O DNA dos procariontes, geralmente composto por um único cromossoma circular, encontra-se localizado numa zona chamada nucleóide no citoplasma. Este não constitui, no entanto, um verdadeiro núcleo. Também pode existir DNA sob a forma de anéis, os plasmídeos. Os mesossomos, invaginações na membrana citoplamática, estão incluídos na composição dos procariotos.
Os procariontes apresentam metabolismos muito diversificados, o que é refletido na sua capacidade de colonização de diferentes ambientes, tais como tratos digestivos de animais, ambientes vulcânicos, ambientes salobros, etc. Apesar de não possuirem organelas celulares, podem conduzir seus processos metabólicos na membrana celular. A maioria possui parede celular, algo que não acontece com certos tipos de células eucariotas (como as dos animais).
São sempre organismos unicelulares, reproduzindo-se assexuadamente por fissão binária. Outras formas de recombinação de DNA entre procariontes incluem atransformação e a transdução. Estas podem ocorrer entre organismos de diferentes géneros, emprestando características de um género a outro diferente. Um exemplo deste processo é a aquisição de resistência a antibióticos através da transferência de plasmídeos contendo genes que conferem essa resistência.
As bactérias têm uma grande necessidade de regular sua expressão gênica. Elas desenvolveram mecanismos para reprimir a transcrição de todos os genes que codificam enzimas não necessárias em determinado momento, e para ativar outros que codificam aquelas que são necessárias.
A espécie bacteriana Escherichia coli se destaca como organismo modelo e como ferramenta biológica para pesquisas científicas. breno e guilherme borgioni

Célula Eucariontes




A célula eucarionte animal.

As células eucariontes, também denominadas de células eucarióticas, são consideradas células verdadeiras, mais complexas em relação às procarióticas por possuírem um desenvolvido sistema de membranas.

Este tipo celular, típico da constituição estrutural dos fungos, protozoários, animais e plantas, apresenta interior celular bem compartimentado, ou seja, uma divisão de funções metabólicas entre as organelas citoplasmáticas: retículo endoplasmático liso e rugoso (RER), mitocôndrias, organoplastos, lisossomos, peroxissomo e complexo de golgi.

A célula eucarionte vegetal.
No entanto, um importante aspecto evolutivo das células eucarióticas é a individualização de um núcleo ou carioteca, delimitado por membrana nuclear ou cariomembrana, restringindo em seu interior o material cromossômico.

Evolutivamente acredita-se que o surgimento das células eucariontes tenha partido do processo de emissão de prolongamentos ou invaginações da membrana plasmática em células primitivas, que foram adquirindo crescente complexidade à medida que se multiplicavam.

Quanto à existência dos cloroplastos e mitocôndrias no interior dos eucariotos, acredita-se que relações simbióticas foram mantidas entre células procarióticas englobadas por células eucarióticas, mantendo um harmônico sistema celular.

Célula Animal


Célula animal é uma célula eucariótica ou seja, uma célula que apresenta o núcleo delimitado pela membrana, podem também unicelulares, como as amebas. Há também, os pluricelulares, como plantas e animais. A célula animal (como toda a célula eucariótica) é delimitada pela membrana plasmática, ribossomo, citoplasma, mitocrôndia e núcleo.
A palavra célula (que vem da palavra cela que significa caixa pequena) foi usada pela 1° vez em 1665, pelo inglês Robert Hooke (1635-1703). Com um microscópio muito simples ele observou pedaços de cortiça, e ele percebeu que ela era formada por compartimentos vazios que ele chamou de células.
Na célula animal não há celulose em suas paredes nem clorofila no seu interior, diferente da célula vegetal.
Desenho de uma célula
Orgânulos:
1 Nucléolo Armazena carga genética
2 Envoltório nuclear Cromossomos do DNA
3 Ribossomos Faz a síntese de Proteínas
4 Vesículas
5 Ergastoplasma ou Retículo endoplasmático rugoso (RER) Transporte de substancias ( há ribossomos grudados nele )
6 Complexo de Golgi empacotar,secretar,produzir substancias
7 Microtúbulos
8 Retículo Endoplasmático Liso Transporte de proteínas
9 Mitocôndrias Respiração celular e produção de energia
10 Vacúolo Existem em celula animal,porém são muito maiores na celula vegetal,ajuda na digestão intracelular e armazenamento de substancias
11 Citoplasma
12 Lisossomas Digestão
13 Centríolos Divisão celular

Tecido Sanguíneo


sangue é um tecido conjuntivo líquido que circula pelo sistema vascular sanguíneo dos animais vertebrados. O sangue é produzido na Medula óssea vermelha e tem como função a manutenção da vida do organismo por meio do transporte de nutrientes, toxinas (metabólitos), oxigênio e gás carbônico. O sangue é constituído por diversos tipos de células, que constituem a parte "sólida" do sangue. Estas células estão imersas em uma parte líquida chamada plasma. As células são classificadas em Leucócitos (ou Glóbulos Brancos), que são células de defesa; eritrócitos (glóbulos vermelhos ou hemácias), responsáveis pelo transporte de oxigênio; e plaquetas (fatores de coagulação sanguínea).
Podemos encontrar os mesmos componentes básicos do sangue em anfíbios, répteis, aves e mamíferos (entre eles, o ser humano).

                      .

Tecido Epitelial


Um epitélio ou tecido epitelial é um tecido formado por células justapostas, ou seja, intimamente unidas entre si. Sua principal função é revestir a superfície externa do corpo, os órgãos e as cavidades corporais internas. A perfeita união entre as células epiteliais fazem com que os epitélios sejam eficientes barreiras contra a entrada de agentes invasores e a perda de líquidos corporais. Os epitélios são caracterizados por serem constituídos de células com diferentes formas (prismáticas, achatadas, etc) e uma ou mais camadas celulares, com pouca ou virtualmente nenhuma matriz extracelular (fluido intersticial) nem vasos entre elas. Contudo, todo epitélio está situado sobre uma malha glicoprotéica, produzida por ela, chamada lâmina basal.
É um dos quatro tipos de tecidos básicos no nosso organismo, juntamente com os tecidos conjuntivomuscular e nervoso.
As células são mantidas unidas através de junções. As principais junções são os desmossomoszônulas de aderênciazônulas de oclusão ou tight junctions, junções comunicantes ou gap e os hemidesmossomos, que ligam as células epiteliais à lâmina basal. Via de regra, as junções empregam proteínas integrais de membrana, associadas ou não a elementos do citoesqueleto.
As células do tecido epitelial da pele são muito unidas, sendo este epitélio estratificado. Já o tecido epitelial que reveste os órgãos onde há trocas de substâncias, é simples. Essa diferença acontece, pois a função da pele é evitar que corpos estranhos entrem no nosso organismo, agindo como uma espécie de barreira. Protege também contra o atrito, efeitos solares e produtos químicos. Já no revestimento dos órgãos, o tecido não pode ser tão grosso, pois nele há trocas de substâncias.
O tecido epitelial apresenta vários tipos de funções, como, proteçãorevestimentoabsorçãosecreção e a proteção da superfície do corpo. O tecido epitelial reveste o corpo humano e suas cavidades. Compõe-se quase exclusivamente de células poliédricas justapostas, ou seja, muito unidas, com pouca ou até nenhuma substância intercelular entre elas, aderidas firmemente umas às outras por meio de junções intercelulares (estruturas associadas à membrana plasmática das células que contribuem para a coesão e comunicação entre as mesmas) ou por meio de proteínas integrais da membrana (caderinas, que perdem a sua adesividade na ausência de cálcio).
Esse tecido é avascular (não possui vasos sangüíneos), sendo a nutrição de suas células feita a partir do tecido conjuntivo adjacente, por difusão.


Tecido Nervoso


tecido nervoso tem por função coordenar as atividades de diversos órgãos, receber informações do meio externo e responder aos estímulosrecebidos.
Esse tecido é de origem ectodérmica e possui células de grande especialização. É responsável pela constituição do sistema nervoso que rapidamente integra os seres vivos no meio em que vive. O sistema nervoso surge através dos celenterados (água vivacoraisanêmonashidras e caravelas).
As células do sistema nervoso dividem-se em: Neurônios: os quais são responsáveis pelas funções receptivas. Células da Glia ou Neuróglia: as quais são responsáveis pela sustentação e pela proteção dos neurónios.
O Tecido nervoso é sensível a vários tipos de estímulos que se originam de fora ou do interior do organismo. Ao ser estimulado, esse tecido torna-se capaz de conduzir os impulsos nervosos de maneira rápida e, às vezes, por distâncias relativamente grandes. Trata-se de um dos tecidos mais especializados do organismo animal.
O Sistema Nervoso é anatomicamente dividido em Sistema Nervoso Central (SNC), formado pelo encéfalo e pela medula espinhal e Sistema Nervoso Periférico (SNP), formado pelos nervos e gânglios nervosos. Tais tecidos são compostos por neurônios e gliócitos (ou células gliais).
Neurônios
Os neurônios são células responsáveis pelos impulsos nervosos, são altamente especializadas, dotadas de um corpo celular e numerosos prolongamentos citoplasmáticos, denominados neurofibras ou fibras nervosas.
O corpo celular do neurônio contém um núcleo grande e arredondado. As mitocôndrias são numerosas e o ergastoplasma é bem desenvolvido. Os prolongamentos do neurônio podem ser de dois tipos:
- dendritos (do grego déndron: árvore), ramificações que têm a função de captar estímulos,
- axônio (do grego áxon: eixo), o maior prolongamento da célula nervosa (varia de frações de milímetro até cerca de 1 metro), transmite os impulsos nervosos.
Gliócitos
Os gliócitos possuem a função de envolver e nutrir os neurônios, mantendo-os unidos. Os principais tipos de células desta natureza são os astrócitos, oligodendrócitos, micróglias e células de Schwann.
Os prolongamentos de algumas destas células enrolam-se nos axônios e formam, ao redor deles, a bainha de mielina, que atua como isolante elétrico e contribui para o aumento da velocidade de propagação do impulso nervoso ao longo do axônio.
A bainha de mielina, porém, não é contínua. Entre uma célula de Schwann e outra existe uma região de descontinuidade da bainha, o que acarreta a existência de uma constrição (estrangulamento) denominada nódulo de Ranvier.
Existem axônios em que as células de Schwann não formam a bainha de mielina. Por isso, há duas variedades de axônios: os mielínicos e os amielínicos. Em uma fibra mielinizada, temos três bainhas envolvendo o axônio: bainha de mielina (de natureza lipídica), bainha de Schwann e o endoneuro.
Nervos
As fibras nervosas organizam-se em feixes. Cada feixe, por sua vez, é envolvido por uma bainha conjuntiva denominada perineuro. Vários feixes agrupados paralelamente formam um nervo. O nervo também é envolvido por uma bainha de tecido conjuntivo chamada epineuro.
Os nervos não contêm os corpos celulares dos neurônios; esses corpos celulares localizam-se no sistema nervoso central ou nos gânglios nervosos, que podem ser observados próximos à medula espinhal.
Quando partem do encéfalo, são chamados de cranianos; quando partem da medula espinhal, denominam raquidianos.
Os nervos permitem a comunicação dos centros nervosos com os órgãos receptores (sensoriais) ou, ainda, com os órgãos efetores (músculos e glândulas). De acordo com o sentido da transmissão do impulso nervoso, os nervos podem ser:
- sensitivos ou aferentes: quando transmitem os impulsos nervosos dos órgãos receptores até o sistema nervoso central;
- motores ou eferentes: quando transmitem os impulsos nervosos do sistema nervoso central para os órgãos efetores;
- mistos: quando possuem tanto fibras sensitivas quanto fibras motoras. São os mais comuns no organismo.
Sinapses
As sinapses são regiões de conexão química estabelecidas entre um neurônio e outro; entre um neurônio e uma fibra muscular ou entre um neurônio e uma célula glandular. Logo, as sinapses podem ser interneurais (entre um neurônio e outro), neuromusculares (entre um neurônio e uma fibra muscular) ou neuroglandulares (entre um neurônio e uma célula glandular).
Um neurônio não se comunica fisicamente com outro neurônio nem com a fibra muscular, tampouco com a célula glandular. Existe entre eles um microespaço, denominado espaço sináptico, no qual um neurônio transmite o impulso nervoso para outro através da ação de mediadores químicos ou neurormônios.
Atuação dos neurormônios
Os neurormônios estão contidos em microvesículas presentes nas extremidades do axônio. Quando o impulso nervoso chega até essas extremidades, as microvesículas liberam o mediador químico para o espaço sináptico. O neurormônio, então, combina-se com receptores moleculares presentes no neurônio que deverá ser estimulado (ou na fibra muscular ou na célula glandular). Dessa combinação resulta a mudança na permeabilidade da membrana da célula receptora, fato que desencadeia uma entrada de íons no interior da célula e a consequente inversão da polaridade da membrana. Surge, então, um potencial de ação que gera,  na célula receptora, um impulso nervoso.

                                         .
Exemplo de tecido nervoso

Tecido Conjutivo


Os tecidos conjuntivos são responsáveis pelo estabelecimento e manutenção da forma do corpo. Este papel mecânico é dado por um conjunto de moléculas (matriz) que conecta e liga as células e órgãos, desta maneira, suporte do corpo. Do ponto de vista estrutural, os componentes do tecido conjuntivo podem ser divididos em três classes: células, fibras e substância fundamental. Diferente de outros tecidos que são formados apenas por células(epitelialmuscular e nervoso), o principal constituinte do conjuntivo é matriz. As matrizes extracelulares consistem em diferentes combinações de proteínas fibrosas e de substância fundamental. Substância fundamental é um complexo viscoso e altamente hidrofílico de macromoléculas aniônicas(glicosaminoglicanos e proteoglicanos) eglicoproteínas multiadesivas(lamininafribonectina, entre outras) que se ligam a proteínas receptoras(integrinas) presente na superfície das células bem como a outros componentes da matriz, fornecendo, desse modo, força tênsil e rigidez à matriz.
As células do tecido conjuntivo ficam imersas em grande quantidade de substâncias intercelular denominada matriz, ou seja, ficam localizados entre células.
Além de desempenhar uma evidente função estrutural, a grande variedade de tecidos conjuntivos reflete a variação de composição e na quantidade de seus três componentes, os quais são responsáveis pela notável diversidade estrutural, funcional e patológica do tecido conjuntivo. Fibras predominantemente colágeno, constituem os tendões, aponeuroses, cápsulas de órgãos, e membranas que envolvem o sistema nervoso central(meningens). As fibras também constituem as trabéculas e paredes que existem dentro de vários órgãos, formando o componente mais resistente do estroma(tecido de sustentação) dos órgãos.
Entre os tipos de tecido conjuntivo podemos citar a derme,o tecido conjuntivo ósseo,o tecido conjuntivo liso e o tecido conjuntivo esquelético.